
ARiSE Lab
Columbia University
Computer Science

Research effort in Machine Learning for Source Code
Analysis

1

2

Do we really need AI/ML for code analysis?

Perhaps we DO need AI/ML in SE

3

Sort a List of Tuples by first element.

Perhaps we DO need AI/ML in SE.

4

Sort a List of Tuples by first element.

Program Synthesis Task

Perhaps we DO need AI/ML in SE.

5

Sort a List of Tuples by first element.

Code Translation

Task

Perhaps we DO need AI/ML in SE.

6

Vulnerability Detection Task

Our Effort in AI for Source Code Analysis

1. Understanding Source Code
a. Code Completion.
b. Vulnerability Detection.

2. Learning to Represent Source Code
a. Code Comprehension/Summarization.
b. Code generation.
c. Code translation.

3. Learning to Edit Code
a. Automated Code Change.
b. Program Repair.

7

Source Code Representation (understanding)

8

Method specific representation

Deterministic

Code Embedding

ML Model

Source Code Generation

9

Embedding

Input
(text : find an element)

Code Generation Model

Learning to Edit
Code

10

Application - 1 (Code Editing) (CODIT - TSE’20)

11

CODIT(contd.)

12

CODIT (contd.)

13

CODIT - Examples

14

CODIT - Takeaway

1. Neural Machine Translation is really useful for learning code change patterns.
2. Tree can be generated by sampling from CFG.
3. A tree is syntactically correct.
4. CODIT builds tree instead of code.

15

Example of Invalid code.

16

Syntactically Incorrect

Contextually Incorrect

Stylistic Incorrect

Learning to
Represent Source
Code

17

Some Interesting Points to note

18

1. Learn about the token formation.
2. Learn about the syntax.
3. Learn about the data flow.
4. Need to learn the structure of the code.

5. Learn to reason about everything above.

Sort a List of Tuples by first element.

Learning about the
“Language”

Learning about the
“Task”

Some Interesting points to note

19

Language Model Task Model

Can we lessen the burden for model?

Can we transfer any knowledge from elsewhere?

1. Word2Vec in code (used by VulDeePecker, SySeVR, Devign) can be a way.
2. Code2Vec; another way.

20

Related topic - Different Models

1. Sequence Based Models

21

2. Graph Based Models

Related topic - Transformer

22

1. Implicitly learns non-linear structure in the input data.
2. Often very large/deep models with very high capabilities.
3. Learns the syntactic and semantic relationship very well.

PLBART - NAACL’21

PLBART:

1. Trained on 470M Java code, 210M Python Code, 47M Stackoverflow posts.
2. Multiple languages - for pre-training one model for different SE tasks.

23

Existing Approach - BERT

24

Pre-training:
Task agnostic Masked Language
Model.

Fine Tuning:
Task Specific Objective.

CodeBERT - BERT for Code

25

BERT - Any Problem?
1. Just a Transformer encoder.
2. Works very well for

Understanding/Descriminative tasks.
3. Must be accompanied with a decoder (trained from

scratch during fine-tuning).
4. Decoder itself may demand high volume of data.

26

PLBART - Take Away points.

1. Transformer (specially very large architectured) are powerful enough to learn
syntactic and contextually correct code.

2. Pre-training a model to understand and generate code simultaneously enables the
model to learn the language as well as engineering constructs.

3. Denoising task in PLBART enables the model to understand the code syntax and
semantics.

4. Auto-encoding task in PLBART enables it to correctly generate code.

27

Some Interesting examples of PLBART

28

29

Some Interesting examples of PLBART

Some Interesting examples of PLBART

Input : Returns the count to which the specified key is mapped in this frequency counter ,
or 0 if the map contains no mapping for this key .

30

Some Interesting results from PLBART (generative)

31

Code Summarization

C
od

e
Sy

nt
he

si
s

C
od

e
Tr

an
sl

at
io

n

Some Interesting results from PLBART (understanding)

32

How things are done in literature (Encoding)
1. Sequence of tokens

33

Russell et. al.

Used models : RNN, LSTM, CNN, etc.

How things are done in literature (Encoding)
 2. AST

34

Used models : ASTNN (Zhang et. al.), Hierarchical RNN (Code2Vec)

How things are done in literature (Encoding)
 3. Graph

35

Used models : Gated Graph Neural Network (Allamanis et. al., Devign)

Pros. and Cons. (Encoding)

36

Sequence Tree Graph

Pros

Cons

- Faster and Simpler
methods.

- Capture syntax.
- Can reason about the
syntactic dependencies.

- Captures both syntax and
semantic dependencies.
- Good for reasoning about
semantic relationship between
tokens.

- Not merely a sequence
of tokens.
- Lacks Syntax info.
- Lacks Semantic info.

- Slightly more complicated
models.
- Still lack the semantic
dependencies (data flow).

- Very complex models.
- Sometimes the yield is not so
much worth the complexity.

How things are done in literature (Generation)

1. Sequence based generation

37

Embedding

Input
(text : find an element)

Used models : RNN, GRU, LSTM (all with beam search)

How things are done in literature (Generation)

1. Tree/Grammar based generation

38

Embedding

Input
(text : find an element)

Pros. and Cons. (Decoding/Generation)

39

Sequence Tree

Pros

Cons

- Easier to implement.
- Off the shelf models can be used
directly.

- Generates Syntactically correct code.
- Easier when the goal is to generate template
rather the the full code.

- May generate syntactically invalid
code.
- Might also create semantically wrong
code.

- More complex models.
- Often difficult to model because of the large
grammar.
- Modeling tokens/identifiers still remains a
challenge
- Semantic correctness is still not guaranteed.

What are the challenges in joint learning?

1. Most of the task needs annotation/objective to update the model.
2. Demand for data increases with the complexity of the task.
3. Data is highly demanded by more complex models.

40

Task agnostic “Pre-Training” (ELMo)

41

Pre-train the base Model with
task agnostic Language

Modeling Objective.

ELMo (pros and cons)

- Pros:
- Reduces burden on learning task specific reasoning.

- Cons:
- Uses (Bidirectional)LSTM as base model.
- Cannot capture the non-linear language constructs in code.

- Prospective Solution :
- Pretrain tree of graph based models.

42

Take Away Points

1. Machine learning in source code analysis showed a lot of promise over the years.
2. Source code exhibit different information through different input modalities, such as

identifier names, syntax, semantic interaction between identifiers.
3. A good model for a particular task should exploit appropriate information modality.
4. Code synthesis is fundamentally different and more challenging than code

understanding.
5. Annotated data scarcity can be overcome by unsupervised pre-training of a model.
6. A pretrained model should contain multiple modality (implicit/explicit), since

pre-training is very expensive.

43

44

45

