
ARiSE Lab
Columbia University
Computer Science

Research effort in Machine Learning for Source Code 
Analysis

1



2

Do we really need AI/ML for code analysis? 



Perhaps we DO need AI/ML in SE 
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Sort a List of Tuples by first element.



Perhaps we DO need AI/ML in SE.
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Sort a List of Tuples by first element.

Program Synthesis Task



Perhaps we DO need AI/ML in SE.
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Sort a List of Tuples by first element.

Code Translation 

Task



Perhaps we DO need AI/ML in SE.
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Vulnerability Detection Task



Our Effort in AI for Source Code Analysis

1. Understanding Source Code
a. Code Completion.
b. Vulnerability Detection.

2. Learning to Represent Source Code
a. Code Comprehension/Summarization.
b. Code generation.
c. Code translation.

3. Learning to Edit Code
a. Automated Code Change.
b. Program Repair.
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Source Code Representation (understanding)
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Method specific representation

Deterministic

Code Embedding

ML Model



Source Code Generation
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Embedding

Input
(text : find an element)

Code Generation Model



Learning to Edit 
Code
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Application - 1 (Code Editing) (CODIT - TSE’20)
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CODIT(contd.)
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CODIT (contd.)
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CODIT - Examples
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CODIT - Takeaway

1. Neural Machine Translation is really useful for learning code change patterns.
2. Tree can be generated by sampling from CFG. 
3. A tree is syntactically correct. 
4. CODIT builds tree instead of code. 
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Example of Invalid code.
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Syntactically Incorrect

Contextually Incorrect

Stylistic Incorrect



Learning to 
Represent Source 
Code
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Some Interesting Points to note
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1. Learn about the token formation.
2. Learn about the syntax.
3. Learn about the data flow. 
4. Need to learn the structure of the code. 

5. Learn to reason about everything above. 

Sort a List of Tuples by first element.

Learning about the 
“Language”

Learning about the 
“Task”



Some Interesting points to note
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Language Model Task Model



Can we lessen the burden for model?

Can we transfer any knowledge from elsewhere? 

1. Word2Vec in code (used by VulDeePecker, SySeVR, Devign) can be a way. 
2. Code2Vec; another way. 
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Related topic - Different Models

1. Sequence Based Models
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2.    Graph Based Models



Related topic - Transformer 
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1. Implicitly learns non-linear structure in the input data.
2. Often very large/deep models with very high capabilities.
3. Learns the syntactic and semantic relationship very well. 



PLBART - NAACL’21

PLBART:

1. Trained on 470M Java code, 210M Python Code, 47M Stackoverflow posts.
2. Multiple languages - for pre-training one model for different SE tasks. 
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Existing Approach - BERT
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Pre-training: 
Task agnostic Masked Language 
Model.

Fine Tuning:
Task Specific Objective.



CodeBERT - BERT for Code
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BERT - Any Problem? 
1. Just a Transformer encoder.
2. Works very well for 

Understanding/Descriminative tasks.
3. Must be accompanied with a decoder (trained from 

scratch during fine-tuning).
4. Decoder itself may demand high volume of data.
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PLBART - Take Away points.

1. Transformer (specially very large architectured) are powerful enough to learn 
syntactic and contextually correct code. 

2. Pre-training a model to understand and generate code simultaneously enables the 
model to learn the language as well as engineering constructs. 

3. Denoising task in PLBART enables the model to understand the code syntax and 
semantics. 

4. Auto-encoding task in PLBART enables it to correctly generate code. 

27



Some Interesting examples of PLBART
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Some Interesting examples of PLBART



Some Interesting examples of PLBART

Input : Returns the count to which the specified key is mapped in this frequency counter , 
or 0 if the map contains no mapping for this key .
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Some Interesting results from PLBART (generative)
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Code Summarization
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Some Interesting results from PLBART (understanding)
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How things are done in literature (Encoding)
1. Sequence of tokens
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Russell et. al.

Used models :  RNN, LSTM, CNN, etc.



How things are done in literature (Encoding)
  2.  AST
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Used models : ASTNN (Zhang et. al.), Hierarchical RNN (Code2Vec)
 



How things are done in literature (Encoding)
  3.  Graph
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Used models : Gated Graph Neural Network (Allamanis et. al., Devign)
 



Pros. and Cons. (Encoding)
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Sequence Tree Graph

Pros

Cons

-   Faster and Simpler 
methods.

-   Capture syntax. 
-   Can reason about the 
syntactic dependencies.

-   Captures both syntax and 
semantic dependencies.
-   Good for reasoning about 
semantic relationship between 
tokens.

-   Not merely a sequence 
of tokens.
-   Lacks Syntax info.
-   Lacks Semantic info.

-    Slightly more complicated 
models.
-    Still lack the semantic 
dependencies (data flow).

-   Very complex models.
-   Sometimes the yield is not so 
much worth the complexity.



How things are done in literature (Generation)

1. Sequence based generation
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Embedding

Input
(text : find an element)

Used models : RNN, GRU, LSTM (all with beam search)



How things are done in literature (Generation)

1. Tree/Grammar based generation
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Embedding

Input
(text : find an element)



Pros. and Cons. (Decoding/Generation)
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Sequence Tree

Pros

Cons

-   Easier to implement.
-   Off the shelf models can be used 
directly.

-   Generates Syntactically correct code. 
-   Easier when the goal is to generate template 
rather the the full code. 

-   May generate syntactically invalid 
code. 
-   Might also create semantically wrong 
code. 

-   More complex models. 
-   Often difficult to model because of the large 
grammar. 
-   Modeling tokens/identifiers still remains a 
challenge
-   Semantic correctness is still not guaranteed.



What are the challenges in joint learning? 

1. Most of the task needs annotation/objective to update the model. 
2. Demand for data increases with the complexity of the task. 
3. Data is highly demanded by more complex models. 
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Task agnostic “Pre-Training” (ELMo)
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Pre-train the base Model with 
task agnostic Language 

Modeling Objective.



ELMo (pros and cons)

- Pros: 
- Reduces burden on learning task specific reasoning.

- Cons:
- Uses (Bidirectional)LSTM as base model. 
- Cannot capture the non-linear language constructs in code.

- Prospective Solution :
- Pretrain tree of graph based models.  
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Take Away Points

1. Machine learning in source code analysis showed a lot of promise over the years.
2. Source code exhibit different information through different input modalities, such as 

identifier names, syntax, semantic interaction between identifiers. 
3. A good model for a particular task should exploit appropriate information modality. 
4. Code synthesis is fundamentally different and more challenging than code 

understanding.
5. Annotated data scarcity can be overcome by unsupervised pre-training of a model.
6. A pretrained model should contain multiple modality (implicit/explicit), since 

pre-training is very expensive. 
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