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1 Background

Self-correcting software or self-modifying software is one of the key stepping stones for absolute automation in software.
A software that can — a) identify and repair any potential flaw, or b) change part of its source code following the
code-change pattern that the developers. Previous research efforts showed that changes made by real developers are
repetitive [5]. Such repetitive nature of changes enables us to build an intelligent machine that can learn those code
change patterns and apply them wherever necessary. Automatic Code Change task can be formulated as a translation
task, where the intelligent machine will translate a piece of code to a changed code. Consequently, Machine Translator
tools such as Neural Machine Translators (NMT), are a natural fit for this task. Previous research efforts [3} 6]
investigated the initial viability of using NMT for code changes. At the core of the NMT, there is an encoder and
a decoder (generator). The encoder encodes and understands the input code; the decoder generates the changed or
corrected code. While existing approaches use NMT techniques from natural language, code is fundamentally different
from natural language. More precisely, unlike natural language, code exhibits defined syntactic and semantic structure,
and the possible name of identifiers can be virtually infinite. Thus further investigation is needed to build a usable tool
for learning automatic code change.

2 Research Overview

In my research, I offer a thorough investigation into the usage of NMT in the Automated Code Change task. Some key
insights guide my investigations and subsequent tool development efforts —

1. The tool must understand what the input code is. The encoder of the NMT must not solely rely on the code
lexicons. It should be able to reason (albeit implicitly) about the input code’s syntax and semantics.

2. Generated code by the decoder (generator) must generate syntactically correct code. Any generated code that
is not syntactically correct is a completely unusable.

3. The decoder (generator) must make sure that the generated code is contextually correct. The code must — a)
use appropriate names for appropriate identifiers, b) maintain proper usage of APIs, and c¢) exhibit developers’
and/or organizational coding practices and rules. Fulfilling this requirement will embellish an automated code
editor in real development environment.

In light of these insights, we first developed CODIT [2ﬂ I investigated the syntactic correctness guarantee of generated
code through Context-Free Grammar (CFG) of the programming language. Using a tree-based model, the decoder in
CopIT samples from the CFG and generates the code’s syntax tree. In doing so, it ensures the syntactic guarantee of
the generated code. CODIT shows significant promise in automated code change as well as automated program repair.

While CODIT successfully generates syntactically correct code, it does not provide any provision to learn about the
contextual correctness. Nor CODIT is designed to learn developers’ coding patterns and practices. For instance, suppose
in an organization, developers tend to catch an exception locally, while other developers may throw that to the caller.
While one of these are more correct than the other depending on the context, from CODIT ’s perspective, both are
syntactically correct. We cannot deterministically say which one CODIT will prefer to generate over the other.
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We solve the contextual correctness problem with a key insight into how any machine learning model works. In any
ML model, conceptually, there are two parts — first, understand the input code’s contextual semantics, and second,
reasoning about the task at hand. Similarly, in the case of NMT based code change tool should learn — a) understand the
code contextual semantics and learn to generate syntactically and contextually correct code, and b) learn to apply the
change patterns. Since the first task does not really depend on the code changes, we can pre-train an NMT model with
raw code samples. Such training aims to make the encoder understand the code semantics and generate syntactically
and contextually correct code. With all these insights, we developed PLBART [lﬂ— A pre-training mechanism for
simultaneously understanding and generating code. We leveraged denoising auto-encoding [4] to pre-train the encoder
and decoder. PLBART showed a great promise in a wide variety of downstream software engineering tasks, including
Automated Code Change.

We learned a key lesson from the experiences with CODIT and PLBART . While high-level code change patterns
are repetitive, individual code changes are usually much more diverse. For instance, safeguarding unsafe APIs with
exception handling is a common high-level pattern that developers follow while changing code. However, in reality, the
developer may handle it locally or through to the caller. Among these two alternatives, which one developer would
choose depends on the development circumstances. For a developer, such a piece of information about the circumstances
can be bug/issue reports, test cases, code review comments, etc. Depending on this auxiliary direction, a developer may
choose to prefer one change over the other. With this insight, I have been designing a model to incorporate such an
auxiliary source of information. My initial finding in this work shows that we can incorporate additional information,
and such information boosts the Automated Code Change tool’s performance.
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